#### Brookhaven National Laboratory

# **High Energy Physics Program Physics Beyond the Standard Model**

Michael J. Murtagh HEPAP Meeting Gaithersburg, Md March 26, 2001



### **Outline**

- Theory
- AGS Experiments
  - Present Experiments
    - E821 Muon (g-2)
    - E787/E949 ( K<sup>+</sup> → π<sup>+</sup>νν)
  - Planned (NSF MRE proposal RSVP)
    - − KOPIO ( $K^0 \rightarrow \pi^0 \nu \nu$ )
    - MECO ( $\mu \rightarrow e$  conversion)
- Fermilab
  - D0 (ppbar collider)
  - MINOS (Long Baseline Neutrino Experiment)



#### **Outline**

#### CERN

- LHC Accelerator
- ATLAS Detector Project
  - ATLAS Project Office
  - Cryostat/Cryogenics
  - Liquid Argon Calorimeter
  - Muon System (Forward Muon System)
- ATLAS Computing
- ATLAS Research Project Maintenance, Operations and Upgrades
- Advanced Accelerator R&D
  - Muon Collider R&D
    - Target Experiment AGS E951
  - Muon Storage Ring Neutrino Beam
    - Site Specific Study II (Brookhaven Site)



# **ATLAS**



Cryostat

Signal Feedthrough



#### **ATLAS Calorimeter Electronics**



Test Station



Brookhaven Science Associates U.S. Department of Energy





Crate Mock up



#### RHIC Computing Facility (RCF) + ATLAS Tier I



RCF/ATLAS Processing Farm





# AGS Experiments (Muon g-2)

Experiments require very high rate low energy Kaon or muon beams often in dedicated modes

- AGS E821 Precision Measurement of Muon (g-2)
  - High discovery Potential
- Boston, BNL, Cornell, Fairfield, Heidelberg, Illinois, Minnesota, Novosibirsk, Sci. Univ. Tokyo, KEK, Yale
- Goal is a measurement of the anomalous magnetic moment of the muon at the 0.35ppm level (systematic errors are in hand)
  - a factor of 20 improvement over CERN experiment
  - sensitive to new physics (e.g. SUSY)
- Major Construction
  - Beam line, Construction of Muon (g-2) ring
  - Large (14m dia), high precision (< 1ppm) super conducting magnet
  - Detectors and magnet measuring system



# The (g-2) ring





# Muon (g-2) Measurement

#### Progress

- FY 97
  - Pion injection, engineering/physics run
    - $10^7 \,\mu^+$  decays recorded ( $da_{\mu}/a_{\mu} = 13 \,\mathrm{ppm}$ ) R. Carey et al. Phys. Rev. Lett. 82 (1999)
- FY 98
  - Muon injection, engineering/physics run
    - $10^8 \,\mu^+$  decays recorded ( $da_{\mu}/a_{\mu} = 5 \,\mathrm{ppm}$ ) D. Brown. et. al. Phys. Rev D, 091101 (2000)
- FY 99, FY 00
  - FY 99, 2  $10^9~\mu^+$  decays recorded ( $da_{\mu}/a_{\mu}=1.3ppm$ ) D. Brown et al. Phys. Rev. Lett. 86, 2227 (2001)
  - FY 00, 7 10°  $\mu^+$  decays recorded (da $_{\mu}/a_{\mu}=0.7$  ppm)
- FY 01 Switched to μ<sup>-</sup> running
  - Goal for FY 01 is 4 10<sup>9</sup> μ<sup>-</sup> (15 week run scheduled)
- FY 02 Requesting 15 week run
  - Final goal is comparable errors on  $\mu^-$  and  $\mu^+$



# (g-2) Data Collection





# Muon (g-2) results





### (g-2) constraints on SUSY models



■ Ellis, Nanopoulos, Olive, hep-ph/0102331



### AGS Experiments Rare Kaon Decays

- AGS E787 Search for  $K^+ \to \pi^+ \nu \nu$ BNL, Fukui, KEK, Osaka, Princeton, TRIUMF Decay is allowed in the Standard Model  $(V_{td})$
- Experiment is searching for other rare decays
- Status
  - Data taking started in 1988, completed in 1998
  - Major upgrade completed for FY 95 running
  - 1988 1995 data (1 K<sup>+</sup>  $\rightarrow \pi^+ \nu \nu$  event observed) - PRL 79, 2204 (1997)
  - 1995-97 data (no new event observed)
    - PRL 84, 3768 (2000)
  - 1998 data equal in sensitivity to previous total data
  - Final result from all data is imminent



# **Unitarity Triangle**







### Summary of E787 Results





# Rare Kaon Decays

- AGS E949 Measurement of  $K^+ \rightarrow \pi^+ \nu \nu$ 
  - 20% V<sub>td</sub> measurement (~ 10 events if Standard Model correct)
    - Discovery potential (present data consistent with 50 events)
- Expanded collaboration including Fermilab
  - Alberta, BNL, FNAL, Fukui, IHEP, INR-Moscow, KEK, Kyoto, New Mexico, Osaka, TRIUMF, Yeshiva
- E787 detector with modest improvements
  - Optimized running conditions
    - Larger Duty Factor, Lower momentum beam (more stopped Ks)
  - Deadtime reduction, more on-line processing
    - Better photon vetoing, Improved trigger, DAQ, running efficiency
  - Status
    - Upgrade almost completed
    - First data run 2001, data taking in 2002, 2003 (60 weeks total)
- Fermilab CKM experiment  $(K^+ \to \pi^+ \nu \nu) \sim 80$  events
  - Brookhaven is a collaborator







### **NSF MRE Proposal**

- RSVP (Rare Symmetry Violating Processes)
  - KOPIO  $(K_1^0 \rightarrow \pi^0 \nu \nu)$
  - MECO ( $\mu \rightarrow e$  conversion; lepton number violation)
- Status
  - Selected by NSF as a Major Research Equipment (MRE) initiative for FY 2002
  - Technical Design Review scheduled for Spring FY 2001
  - R&D funding provided in FY 2001
  - Awaiting budget decisions



#### **RSVP - KOPIO**

- **MOPIO**  $(K^0 \rightarrow \pi^0 \nu \nu)$ 
  - BNL, Cinncinnati, INR Moscow, Kyoto, VPI, New Mexico, TJLAB, TRIUMF, U. Va, Yale, Zurich

Spokespersons (D. Bryman, L. Littenberg, M. Zeller

- Measurement of direct CP violation
  - Goal is 70 events (10% measurement of  $\eta$ )
- Requirements
  - High Flux (4 10<sup>7</sup> K<sup>0</sup> per spill)
  - Low energy, bunched beam provides kinematic constraints on final state
  - Excellent background rejection (equivalent to E 787)
- Plans
  - Technical review Spring 2001
  - 3-4 years of construction
  - 90 weeks of running to reach initial goal



### **KOPIO**



#### E949 and KOPIO Constraints



Ciuchini et. al. Hep-ph/0012308



#### **RSVP - MECO**

- MECO ( $\mu \rightarrow e$  conversion)
  - High Discovery Potential
  - BNL, Boston, Irvine, Houston, INR-Moscow, NYU, Penn, Perdue, Wm&Mary
    - Spokesperson W. Molzon
  - Search for lepton number violation
    - Goal of experiment is to reach below 10<sup>-16</sup>
    - Improvement of  $\sim 10^4$  over present limits
  - Requirements
    - high intensity muon beam
    - bunched beam with clean interbunch region
  - Plans
    - Technical review Spring 2001
    - 4-5 year construction project
    - 40 weeks of running to reach initial goal



### MECO Experiment





#### **MECO**

#### SUSY GUTS induce µ → e conversion at level -



Hisano et. al. Phys. Lett B391, 341 (1997), hep-ph/96052965



#### Fermilab – D0

- Brookhaven Role in D0
- BNL was a founding member of D0
  - Design/Construction of Central Calorimeter (U/LAr)
  - Management of on-line/off-line computing effort
  - Co-leader of the top analysis effort; major role in W mass measurement
- Present role in Run 2
  - J. Kotcher, Associate Project Manager Installation and Commissioning
  - Lead responsibility for Forward Preshower Detector
  - Co-leader off line software group
  - Major role in DAQ software
  - Contribution to Forward Proton Detector; Muon system commissioning



#### Fermilab-D0 Forward Preshower









#### Fermilab - MINOS

- MINOS (Long Baseline Neutrino Oscillations)
  - Brookhaven Role
    - Leading study of sensitivity for  $\nu_{\mu} \rightarrow \nu_{e}$  oscillations
      - Impact on beam design
    - Members of beam monitoring working group
      - Detector tests at Brookhaven Accelerator Test Facility (ATF)
    - Software development especially graphic displays



### **Summary and Conclusions**

- Brookhaven High Energy Physics program
  - Strong and Diverse program
  - Well focused on key aspects of national program
  - Senior leadership positions in almost all activities
  - Innovative scientific and technical contributions
  - High discovery potential
    - AGS program
      - E821 (g-2), E787/E949 ( $K^+ \rightarrow \pi^+ \nu \nu$ )
      - NSF MRE RSVP (KOPIO, MECO)
    - Fermilab
      - D0
      - MINOS
    - ATLAS
    - Muon Collider/Neutrino Storage Ring R&D
    - Theory

